
Qt or HTML5?
A Million Dollar Question

Burkhard Stubert
Chief Engineer, EmbeddedUse

October 2, 2017

WHITEPAPER

Burkhard Stubert is Solopreneur and Chief Engineer at Embedded Use with over 20 years of experience
in software engineering. He has developed numerous embedded and desktop applications with Qt and QML.
He was the first to give QML trainings back in early 2010, when QML was still far away from an alpha release.
His latest major products include driver terminals for forage and sugar root harvesters, infotainment systems
for US and European car OEMs, an in-flight entertainment system and a display computer for e-bikes.

He offers independent professional services for developing embedded systems – preferably with a QML GUI
and Qt/C++ middleware. Burkhard worked and lived in India, England and Norway and moved back to his
native country, Germany, a couple of years ago. In his spare time, he enjoys hiking, biking and skiing through
the Bavarian Alpes.

2Qt or HTML5? A Million Dollar Question

Executive Summary

This white paper explains how one of the world’s larg-
est home appliance manufacturers could save millions
by using Qt over Web technologies.

Both Facebook and Netflix implemented their epon-
ymous apps with Web. Despite spending millions of
dollars, neither of them could achieve an iPhone-like
user experience (60 frames per second and less than
100ms response to user inputs) on anything less
powerful than a system-on-chip (SoC) with four ARM
Cortex-A9 cores.

In contrast, numerous products like infotainment sys-
tems, in-flight entertainment systems, harvester termi-
nals and home appliances prove that you can achieve
an iPhone-like user experience (UX) on single-core
Cortex-A8 SoCs. Our above-mentioned manufacturer
HAM Inc. (renamed for the sake of confidentiality)
verified these results by building both a Web and Qt
prototype.

At a volume of one million units, an industrial-grade
NXP i.MX53 SoC with a single Cortex-A8 core costs
roughly 10 euros. This is enough for Qt. At the same
volume, an NXP i.MX6 SoC with four Cortex-A9 cores
required for Web costs roughly 21 euros.

Even if HAM offset the SoC costs against the costs of
the commercial Qt license, HAM would have to pay
millions of euros more for a Web than for a Qt solu-
tion. And, HAM would have no way to scale down the
Web solution to mid-range and low-end appliances.

At a volume of one million units,
the SoC for Qt is 11 euros cheaper
per unit than the SoC for Web
– to achieve the same user experience.

This means that Qt can reduce
hardware costs by over 53 percent!

3Qt or HTML5? A Million Dollar Question

Table of Contents

1 Introduction ..4

2 Recap of ARM SoCs ..5

3 Web Scales Down Badly7
 3.1 Facebook – Multi-Million-Dollar Mistake
 with Web ...7
	 3.2	 Netflix	–	Muddling	Through	with	Web8
 3.3 Hardly Any Embedded Web Applications9

4 Qt Scales Down Well ...9
 4.1 Numerous Embedded Qt Applications9
 4.2 Qt Success Story: Electrolux10

5 Nothing Will Change Any Time Soon11
 5.1 Flash, RAM and Power11
 5.2 Start-up Times ...11
 5.3 Rendering Flows ..12

6 Conclusion ...14

7 Sources ..16

4Qt or HTML5? A Million Dollar Question

1 Introduction
Let me introduce you to HAM Inc. Its real name was
changed for confidentiality, but it is one of the world’s
biggest home appliance manufacturers. HAM pro-
duces millions of appliances like ovens, cooktops,
washing machines, dish washers and refrigerators per
year. More than 90% of the appliances are “powered”
by a microcontroller with no operating system at all or
a very simple real-time operating system.

The HMI consists of physical knobs, buttons and dis-
plays without touch (many with 7-segment displays,
some with TFT displays). Only premium appliances
have a touch display, an operating system (e.g., QNX,
Linux) and a system-on-chip (SoC) with a micropro-
cessor (CPU) and a graphical processor (GPU). The
SoC sports a single-core ARM Cortex-A8, which is in
the lower middle class with respect to performance.
The GPU supports OpenGL. Premium appliances
make up for 5% of all appliances produced by HAM
and cost 2000 euros and more.

Within the next 10 years, HAM expects to move its
premium appliances up to SoCs with multiple Cor-
tex-A9 cores. The use of 64-bit SoCs with ARMv8-A
architecture is unlikely, because they are far too
expensive. It also expects to use SoCs with a single
Cortex-A5/A7/A8 or ARM11 core in most of its mid-
range appliances. Low-end appliances will stay on
microcontrollers.

HAM also wants to retain its reputation as a manufac-
turer of high quality products, which is why HAM aims
to deliver an iPhone-like user experience across its
product lines.

In early 2016, HAM had to start looking for a new HMI
and application framework, because the framework
used by HAM was discontinued. HAM quickly nar-
rowed down the possible contenders to Web (Angu-
larJS HMI on Blink, Chromium’s rendering engine) and
Qt (QML HMI on Qt/C++).

AngularJS is released under MIT license and Blink
mostly under BSD license. It seemed to HAM that
Web technologies would cost nothing. The same is
true for Qt under LGPLv3. However, HAM’s lawyers
prohibited the use of LGPLv3 mainly because of the
anti-tivoisation clause. If HAM wanted to use Qt, it
had to use Qt under a commercial license. Using Qt
Commercial entails paying per-developer and per-de-
vice license fees.

The situation looked dire for Qt, when HAM asked
me in early 2017 to make a case for Qt – despite its
presumably much higher costs than Web. It was clear
to me that Qt would only stand a chance if I argued
in the only currency that purchasing departments all
over the world understand: dollars, millions of dollars!
I had to find some substantial hidden costs of the
Web solution that HAM had overlooked. I set out to
prove this hypothesis:

A Web solution requires
a considerably more powerful and
more expensive system-on-chip (SoC)
than a Qt solution to achieve an
iPhone-like user experience (UX).

5Qt or HTML5? A Million Dollar Question

2 Recap of ARM SoCs
A brief recap of ARM SoCs may help to understand
my argument. The first table shows example devices
for some ARM core designs. ARM9 and ARM11
cores implement the 32-bit architectures ARMv5 and
ARMv6, respectively. They always have a single core.
ARM9 cores do not have a GPU, whereas ARM11
cores may have one.

The Cortex-A8, A9 and A15 cores are based on the
32-bit ARMv7-A architecture. They all have a GPU
with OpenGL acceleration. The Cortex-A8 is always
single core, whereas the A9 and A15 are multi-core.

The high-end Cortex-A57/53 implements the 64-bit
ARMv8-A architecture. These SoCs have a perfor-
mance like current low-end desktop PCs.

If I note a class of products in generic terms like “IVI
in middle-class cars (2017)”, I know one or more
products with this SoC. I am under a non-disclosure
agreement though and are not allowed to give you the
company’s name.

Core Example Devices

Cortex-A57/53 IVI in premium cars (2015), Samsung GS6, Raspberry Pi 3

Cortex-A15 IVI in middle-class cars (2017), Samsung GS4

Cortex-A9 iPhone 4S, IVI in middle-class cars (2013), agricultural terminals (2017)

Cortex-A8 Premium ovens (2013), Nest thermostat, iPhone 4, In-flight entertainment (2014),
agricultural terminals (2013), Nokia N9

ARM11 Raspberry Pi 1, iPhone 3G, Nokia N8

ARM9 Nintendo DSi, Lego Mindstorm EV3, VoIP phones (2007)

6Qt or HTML5? A Million Dollar Question

The next table shows the prices of well-known indus-
trial-grade SoCs for volumes of 1, 100, 10,000 (10K)
and 1,000,000 (1M) units. All prices are in Euros.
I sampled the prices for 1 and 100 units from the
websites of electronics distributors. Prices for higher
volumes are not publicly available. I extrapolated the
prices for 10,000 and 1,000,000 by applying a 33%
discount per 100 times multiple. The extrapolated
prices for one million units were in the ballpark I knew
from several projects I had worked on.

Consumer SoCs, which do not operate in extreme
temperatures from -30 °C to +70 °C and which do
not have to resist a high-pressure cleaner or extreme
dust, are considerably cheaper. The same goes
for SoCs with less cores. For example, an industri-
al-grade i.MX6 with two instead of four cores goes for
nearly half the price.

Core Architecture Cores 1 100 1K 1M

R-CAR M3 Cortex-A57/53 4/4 202.50 135.00 90.00 60.00

TI AM5728 Cortex-A15 2 124.00 82.65 55.10 36.75

NXP i.MX6 Cortex-A9 4 71.35 47.55 31.70 21.15

NXP i.MX53 Cortex-A8 1 33.05 22.05 14.70 9.80

NXP i.MX35 ARM11 1 16.00 10.65 7.10 4.75

NXP i.MX25 ARM9 1 11.30 7.55 5.05 3.35

7Qt or HTML5? A Million Dollar Question

Facebook could not achieve a satisfactory user
experience with Web for its app on an iPhone 4S. The
iPhone 4S was powered by a dual-core Cortex-A9
SoC. Hence, Facebook switched from Web to native
for its smartphone apps in 2012 and has never looked
back since. HAM had the same experience with its
Web prototype in 2017.

Netflix never gave up on Web. It developed its own
rendering engine and a highly optimised version of
ReactJS. Both are proprietary. They came close to
an iPhone-like UX (30 frames per second, 110 ms
response times to user inputs) on higher end devices
at least powered by a Cortex-A8, if not a Cortex-A9.
Netflix spent millions of dollars to get a decent UX on
TVs, STBs and BD players. There are few companies
in the world who have the developer talent and the
money to pull off this feat.

3.1 Facebook – Multi-Million-Dollar
 Mistake with Web

In an interview at the Disrupt SF 2012 conference
(Olanoff, 2012), Mark Zuckerberg (CEO and founder of
Facebook) conceded a multi-million-dollar mistake.

“The biggest mistake that we made as a
company is betting too much on HTML5 as
opposed to native [...] We burned two years.”

He was talking about the Facebook app on smart-
phones. This insight led Facebook to change from
Web to native apps on iOS and Android. Zuckerberg
also pointed out the reason for this move to native.

“The mobile [user] experience is so good
that good enough is not good enough. We
need to have something that is at the highest
quality level. The only way we are going to get
there is by going native.”

In other words, the world’s top Web developers at
Facebook were not able to achieve a good user expe-
rience (UX) on a 2012 smartphone. Facebook could
not achieve a good-enough user experience on an

3 Web Scales Down Badly

iPhone 4s. The iPhone 4s (iPhone 4S, 2011) sports a
dual-core Cortex-A9 SoC clocked at 800 MHz with a
multi-core GPU for OpenGL graphics acceleration and
with 512 MB RAM.

Facebook’s representative on the W3C Advisory
Committee, Tobie Langel, gives more details about
the technical issues (Langel, 2012).
• Not enough RAM and a lack of tools to figure out

what is going wrong: “The biggest issues we've
been facing here are memory related. Given the size
of our content, it's not uncommon for our application
to exhaust the hardware capabilities of the device,
causing crashes. Unfortunately, it's difficult for us to
understand exactly what's causing these issues.”

• Scrolling performance “[...] is one of our most impor-
tant issues. It’s typically a problem on the newsfeed
and on Timeline which use infinite scrolling [...] and
end up containing large amounts of content.”

• “Inconsistent framerates, UI thread lag (stuttering).”
• Not only true for different operating systems but

also for different rendering engines: “Native momen-
tum scrolling has a different feel across operating
systems. JS implementation end up being tailored
for one OS and feels wrong on other ones (uncanny
valley).”

You may object that Facebook’s blunder happened
more than five years ago and that Web has improved
tremendously in that time. The findings of HAM Inc.
refute these objections.

In 2017, HAM implemented a crucial part of an oven
HMI once with Web and once with Qt. The Web var-
iant yielded a bad user experience on anything less
powerful than a quad-core Cortex-A9 (NXP i.MX6).
The user experience on the quad-core Cortex-A9 was
acceptable, but not good. The main problems were
long start-up times, high RAM consumption and stut-
tering during animations and scrolling.

Using 64 MB of RAM for Qt instead of 512 MB for
Web makes quite a big cost difference – especially
for high volumes. Lacking good tools for finding
performance problems (memory, speed), increases
the non-recurring engineering costs significantly, and
debugging and profiling costs many times more than
coding.

©
Al

l r
ig

ht
s r

es
er

ve
d

3.2	 Netflix	–	Muddling	Through	with	Web

Netflix faced an enormous fragmentation problem,
when moving from DVDs to video streaming in 2007.
The Netflix application had to run on TVs, set-top
boxes (STBs), DVD/BD players, gaming consoles,
smartphones, tablets, laptops and desktop PCs. The
CPUs of these devices ranged from the low end (e.g.,
ARM9) to the high end (e.g., Intel Core i7). Some
devices had a GPU, some not. The screen resolutions
and formats varied widely. This is not unlike HAM’s
situation, although Netflix’s target devices are more
powerful.

It was impossible for Netflix to develop its application
for each device. They focused on a few devices at
first. However, they had to reach more devices and
more customers to grow their business. Netflix turned
to Web in 2009/10 to achieve this goal. They chose
a hybrid approach. The HMI was written in standard
HTML5, CSS and JavaScript and rendered with the
QtWebkit library. In contrast to browsers, QtWebkit
allows the application to access hardware capabilities
directly. Browsers run in a sandbox and allow only
very limited access to hardware capabilities.

A presentation of two Netflix engineers (McCarthy
& Trott, 2011) in 2011 gives a good idea about the
problems with this approach. If you know the Netflix
app from those times, you also know that the user
experience was simply awful. In comparison to the
Facebook HMI, the Netflix HMI is simple: Two to three
horizontal cover flows with up to six images are visible
at the same time.

Netflix got away with such a bad user experience,
because they were the only game in town. This
changed around 2014, when other players like Apple,
Amazon and HBO entered the game. Netflix’s user
experience was not competitive any more. They had
to change a lot.

Netflix built their own custom-tailored rendering
engine, Gibbon. Gibbon is written entirely in JavaS-
cript and runs on a non-JIT version of JavaScriptCore.
The Netflix engineers rewrote the entire HTML5 HMI
with ReactJS (React, 2013), a JavaScript library for
building user interfaces. Driven by thorough profil-
ing, they morphed ReactJS into a proprietary variant
React-Gibbon, which is highly optimised for their
Gibbon rendering engine. If ReactNative had been
around in 2014, they would have started with that.

The blog post “Building the New Netflix Experience
for TV” (Nel, 2013) and the video “Performance with-
out Compromise” (McGuire, 2016) show how difficult
it was to achieve response times to user inputs of
110ms and not quite fluid animations at 30 frames per
second (fps) on most devices. Moreover, the Netflix
engineers were helped by the fact that TVs, set-
top boxes (STBs) and DVD/BD players gained more
powerful CPUs supported by GPUs to cope with full
HD. For example, the 5th-generation Roku player is
powered by a 64-bit, quad-core ARM Cortex-53 like
the Raspberry Pi 3.

This effort must have cost Netflix dozens of person
years and millions of dollars. Nevertheless, it still falls
short of the golden standard of less than 100ms and
60fps set by the iPhone.

It is also important to understand that only very few
Web developers in the world can optimise the perfor-
mance of a web application on an embedded device
in the way Netflix did. Typical web developers build
web applications on computers that are more than
400 times more powerful than the average TVs on
which the Netflix application runs, and most develop-
ers struggle to get 100ms response times and 30 fps
on these computers.

Compare that with the experience of one of HAM’s
competitors.

 Two developers, one beginner
 and one experienced developer,
 could develop a Qt-based HMI
 for an oven on a single-core
 Cortex-A8 with a good user
 experience in less than 1.5 years.

The developers did not have to write their own ren-
dering engine and did not have to create their own
variant of QML.

The moral of the Netflix story is that Web incurs huge
extra development costs (read: millions of dollars) to
achieve a decent user experience on SoCs like a Cor-
tex-A9, let alone on less powerful SoCs.

9Qt or HTML5? A Million Dollar Question

3.3 Hardly Any Embedded
 Web Applications

I could only find very few embedded devices using
Web technologies for their core HMI. The most
prominent user of Web is, obviously, Netflix. Another
example from the same industry is Livebox Play
(SoftAtHome, 2013), the STB by the French telecom
Orange. Many apps on TVs and STBs are written with
Web technology (e.g., HbbTV, proprietary subsets of
HTML5).

For example, the catch-up TV apps of Germany’s
public TV channels are written with HbbTV, a subset
of HTML5. The problem with these apps is a lacking
user experience.

I am not aware of a single home-appliance maker who
uses Web technology. Electrolux explicitly decided
against using Web technology in 2011.

The automotive industry also makes little use of Web.
I could only find one infotainment system that has a
core HMI built with HTML5: the Porsche 918 Spyder’s
(S1nn, 2014).

JavaScript frameworks like Angular and ReactNative
advertise themselves for mobile and desktop, not
for embedded. Angular’s tagline is “One framework.
Mobile & desktop.”, ReactNative’ is “Learn once, write
anywhere: Build mobile apps with React”. It should be
noted that smartphone SoCs are much more powerful
than the typical embedded SoCs.

The SoCs in these Qt products range from ARM11s over Cortex-A8s and Cortex-A9 all the way up
to Cortex-57/53s.

• 7 Top-15 OEM’s
• 2 EV OEM’s
• 12+ tier1 Suppliers
• More...

• eGym
• e-Bikes
• Precor

• 1 of Top-3
• ROPA
• CCI
• Krone
• More...

• 2 of Top-3
 OEM’s including
 Panasonic

• Electrolux
• HAM

Numerous embedded Qt applications used daily by
millions of people speak for themselves of how well
Qt scales down. The Electrolux hit a nerve with HAM,
as Electrolux went through a very similar decision pro-
cess as HAM – but already 5 years earlier.

4.1 Numerous Embedded Qt Applications

The following diagram shows five industries – auto-
motive, agriculture, avionics, fitness and home appli-
ances – where Qt is widely used. Qt is also making
big inroads into industrial automation and med tech.
You can find more success stories from many other
industries on the Built with Qt (qt.io, 2017) web page.

4 Qt Scales Down Well

10Qt or HTML5? A Million Dollar Question

4.2	 Qt	Success	Story:	Electrolux

Electrolux went through a very similar decision pro-
cess as HAM in 2011/12. Electrolux talked about its
decision (Penacchio, 2014) publicly at the Qt Day
in Italy, 2014. Electrolux had compared several HMI
and application frameworks including Qt and Web.
The winner was Qt:

“[In 2011] Electrolux decided to invest
globally in Qt and specifically in Qt Quick
for the development of high-end user inter-
faces for appliances [...] Qt has the potential
to be a strategic user interface development
platform for all mid/high-end appliances for
Electrolux.”

Electrolux said that it has released one oven with Qt
(Electrolux, 2015) and that more appliances would
follow. Given the time frame from 2012 to 2014 for
the oven and the razor-thin profit margins for home
appliances, the SoC is likely an ARM11 with GPU
or a Cortex-A8. The cover flow with the recipes looks
very smooth.

Electrolux gave a meaningful list of pros and cons
for using Qt.

Pros Cons

Faster implementation and learning curve License selection (Commercial vs. LGPL) difficult

Much cheaper than other HMI frameworks
Missing integration with UI design tools
like Photoshop, Illustrator (feature implemented
in Qt 5.10)

More robust and powerful

Clear separation of GUI and backend:
designers can change GUI

Easy integration with C/C++

Smooth animations

And more ...

+

Electrolux’s findings were quite like HAM’s – although five years earlier.

-

11Qt or HTML5? A Million Dollar Question

Even after having seen all the evidence against Web,
one Web supporter at HAM said: “Browser-based
HMIs for home appliances will come, but it will still
take some time. Probably on a different SoC.”
For this to come true, Web would have to overcome
some inherent problems on embedded systems.

5.1 Flash, RAM and Power

The two shared libraries Qt5Quick and Qt5Qml, which
include the QML rendering engine and the JavaS-
cript engine, have a combined size of 8 MB (Qt 5.9.1,
stripped release build for Ubuntu 16.04 LTS).

The shared library Qt5WebEngineCore, which
includes the Web rendering engine and the JavaS-
cript engine, comes in at 103 MB. The same library
had a size of 82 MB in Qt 5.7.1. Five years ago, the
predecessor library, Qt5Webkit, had a size of 15 MB.
You could bring down the size to 11 MB with some
compile switches.

The standard installation of the Chromium browser
uses 42 MB on Ubuntu 16.04 LTS. This is still five
times more space than needed by QML. The huge
Web library sizes have critical implications.

A Web application uses considerably more RAM than
a Qt application. If you force a Web application into
the same RAM size as a Qt application, it will incur
cache misses and must load more pages from flash.
The Web application is slower.

 A Qt application for a home appliance
 can comfortably run on a system with
	 64	MB	of	flash	and	main	memory.	
 A Web application certainly needs
 more than 64 MB, probably 256 MB
	 to	512	MB.	More	flash	and	main	
 memory means higher costs for the
 Web solution.

5 Nothing Will Change Anytime Soon

Most Web solutions including HAM’s would use Blink
as the web engine. John Gruber from Daring Fireball
(Gruber, 2017) ran the same script, simulating read-
ing of web pages on the same MacBook Pro once
with Chrome and once with Safari. The battery lasted
5:30 h for Safari and 3:40 h for Chrome. This does
not make Web appealing, because home appliances
must be extremely power conscious to achieve AAA
ratings.

5.2 Start-up Times

The huge size of the Chromium browser also implies
slower start-up times for Web applications. Starting
the Chromium web browser on a high-end laptop with
a quad-core Intel Core i7 at 2.5 GHz, 16 GB RAM and
a fast SSD takes more than 2 seconds. Starting Chro-
mium on a Raspberry Pi 3 takes 6 seconds. Starting
the web browser in less than 10 seconds on a Cor-
tex-A8 SoC would require a significant time-consum-
ing optimisation effort with uncertain results. These
start-up times do not include the time for starting the
operating system and loading the Web application.

Compare this with the Qt case. Starting both Linux
and a QML instrument cluster on a quad-core ARM
Cortex-A9 (1 GHz, 1GB RAM, 8GB flash) takes 1.5
seconds (Avila, 2016). The QML application takes 0.25
seconds and Linux 1.25 seconds. This is less than the
Chromium web browser needs on a high-end laptop.
Users expect devices like ovens, cooktops, printers,
STBs and TVs to be instantly on. Start-up times of
more than three seconds are an immediate knock-out
criterion for potential buyers.

The fast start-up of the QML application depends
critically on static linking of the Qt libraries and on the
QML compiler. Both features are only available with
the commercial Qt license.

12Qt or HTML5? A Million Dollar Question

Static linking reduces the size of executable further,
as it removes all library parts that are not needed by
the application. When the operating system starts
an application, it must load the executable and all
dependent libraries from flash memory. Reading from
flash memory is extremely slow compared to read-
ing from RAM. Hence, the bigger the executable and
libraries the longer the start-up takes.

Even with static linking, the Chromium browser had a
size of 42 MB compared to 8 MB of the shared QML
libraries. Even with static linking, Web executables will
be five times bigger than Qt executables. Hence, Web
applications will take five times longer to load than Qt
applications.

The QML compiler translates QML code into C++
code, which is translated into machine code by
the C++ compiler as usual. The QML compiler also
compiles JavaScript functions and expressions.
Hence, the just-in-time (JIT) compilation of JavaScript
engines is done at compile time and not at run time.

 I achieved a 30% faster start-up for
 the QML application of a harvester
 terminal (Stubert, 2016) – just by
 using the QML compiler.

Web has nothing like an “HTML/CSS/JavaScript”
compiler. Writing such a compiler would be very diffi-
cult, because it had to cover the complete, unwieldy
HTML, CSS and JavaScript standards. If feasible at
all, Web’s catch-up would take years, in which QML
development would not rest.

Even without the QML compiler, Web would not gain
an edge over QML because of the huge performance
improvements of the JavaScript engines over the last
years. The Qt developers can use the same tech-
niques to speed up their JavaScript engine. QML is
easier to optimise, as it is a much simpler language
than HTML and CSS and as the Qt developers have
full control over QML.

HMTL

DOM Tree

QML

Style Rules

Render Tree QML Scene Graph

OpenGL Scene GraphLayout Tree

Display Display

5.3 Rendering Flows

The next diagram shows the Web rendering flow (left) and the QML rendering flow (right).

13Qt or HTML5? A Million Dollar Question

Here is a brief description of the Web rendering flow
(see here (Garsiel & Irish, 2011) for a detailed expla-
nation).

•	Step 1: The HTML parser creates the DOM tree from

the HTML documents. The HTML grammar is not
context-free and hence hard to parse.

•	Step 2: The CSS parser creates the style rules from
the style sheets.

•	Step 3: The style rules are applied to the nodes in
the DOM tree. It is hard to figure out, which rule
applies to which DOM node because of the cascad-
ing nature of the style rules. The result of this step is
the render tree, which contains the visual nodes in
the right rendering order.

•	Step 4: The layout step calculates the position and
the size of each node.

•	Step 5: The painting step traverses the render tree
node by node and paints each node on the display.

Steps 1, 2 and 3 are the most expensive steps. Apply-
ing the cascading style rules in step 3 is especially
expensive. Every CSS rule can lead to a costly trans-
formation of the render tree. Steps 4 and 5 are similar
for Web and QML.

Netflix optimises the first three steps heavily. They
use as little HTML5 and CSS as possible to reduce
the number of CSS rules and the size of the Render
Tree. They apply algorithms to reduce the size even
further. ReactNative uses a similar approach.

QML does not separate content (HTML) and style
(CSS). Hence, the QML flow needs only one step
instead of Web’s first three steps. The QML flow
avoids the costly step 3 of applying CSS style rules
to the DOM tree. It is highly optimised towards
a very direct and simple mapping onto the OpenGL
scene graph.

If you choose Web, your developers will have to write
the application code in a very special way with a con-
stant focus on optimisation. Moreover, they will have
to change the Web rendering engine to optimise the
Render Tree.

While the Web developers are still trying to optimise
their code and tools, the QML developers will have
finished the application code. Sequality’s experiment
corroborates this (Larndorfer, 2017): Developers
achieve less in the same time with Web than with Qt.
And, the Web solution is less fluid and less responsive
than the Qt solution.

Hence,	the	QML	flow	needs	only	one	
step	instead	of	Web’s	first	three	steps

14Qt or HTML5? A Million Dollar Question

6 Conclusion
The Facebook and Netflix stories show that you
cannot achieve an iPhone-like user experience for
Web applications with anything less than a quad-core
Cortex-A9 SoC. The Netflix story highlights that this
would cost millions of dollars.

HAM tested this by building both a Web and a Qt
prototype for critical parts of their current HMI. Any-
thing less than a quad-core Cortex-A9 SoC lead to
poor user experience. Even on such a powerful SoC
the Web solution suffered from long start-up times,
huge memory consumption and sometimes stutter-
ing scrolling and animations. HAM would have had to
spend a considerable amount of time and money on
optimising the Web solution – in addition to the higher
SoC costs.

Many Qt products like the Electrolux oven, info-
tainment systems, harvester terminals and in-flight
entertainment systems achieve an iPhone-like user
experience on a single-core Cortex-A8 SoC. Qt scales
down well even further. ARM11 SoCs with GPU like
the Raspberry Pi 1 enable an iPhone-like UX as well.
Even ARM11 SoCs without GPU or ARM9 SoCs offer
a good tradeoff between a cheap SoC and a good-
enough UX.

These findings allowed me to substantiate my hypo-
thesis.

A Web solution requires at least a quad-core
Cortex-A9 SoC to achieve an iPhone-like
UX, whereas a Qt solution requires at most
a single-core Cortex-A8 SoC.

With the prices for SoCs in chapter two, we can cal-
culate the total cost for 10 000 and 1 000 000 units for
Web and Qt respectively.

The cost for the SoCs are €1 700 000 and €11 350 000
lower for Qt at the different production levels. In other
words, Qt can save around 53% in hardware costs!

The following diagram shows the per-unit cost differ-
ence assuming a volume of one million units. The var-
iable qt denotes the per-unit costs of the commercial
license. For Qt LGPLv3, qt is 0. For Qt Commercial, qt
is greater than 0.

As qt was a fraction of the 11-euro cost difference, Qt would save HAM millions of euros. HAM’s decision to go
with Qt was easy.

Same Application
(e.g., appliance, printer, STB, TV, IFE, terminals)

€21.15
AngularJS
Blink/C++

Linux
4-core Cortex-A9

€9.80 + qt
QML

Qt/C++
Linux

1-core Cortex-A8

€11.35 - qt

qt = 0€ for Qt LGPLv3
qt > 0€ for Qt Commercial

Estimated prices per unit
at volume of 1 Million

 € / 10k units € / 1M units

Web: Cortex-A9
NXP i.MXP6 quad 3 170 000 21 150 000

Qt: Cortex-A8
NXP i.MX53 1 470 000 9 800 000

Cost
Difference	(€) 1 700 000 11 350 000

15Qt or HTML5? A Million Dollar Question

7 Sources

Avila, R. (2016, 04 20). Fast-Booting Qt Devices, Part 1: Automotive Instrument Cluster. Retrieved from qt.io:
http://blog.qt.io/blog/2016/04/20/fast-booting-qt-devices-part-1-automotive-instrument-cluster/

Electrolux. (2015). Ovens Electrolux Color Touch Screen. Retrieved from Youtube:
https://www.youtube.com/watch?v=BpI7dku7Yr8

Garsiel, T., & Irish, P. (2011, 08 05). How Browsers Work: Behind the scenes of modern web browsers.
Retrieved from Html5 Rocks: https://www.html5rocks.com/en/tutorials/internals/howbrowserswork/#Rendering_engines

Gruber, J. (2017, 05 24). Safari vs. Chrome on the Mac. Retrieved from Daring Fireball:
https://daringfireball.net/2017/05/safari_vs_chrome_on_the_mac

iPhone 4S. (2011). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/IPhone_4S

KDAB. (2017, 09 28). CCI – putting intelligence into agriculture, using Qt. Retrieved from KDAB:
https://www.kdab.com/cci-putting-intelligence-agriculture-using-qt/?utm_source=Master+List+06-16&utm_campaign=d-
ca3188043-EMAIL_CAMPAIGN_2017_09_25&utm_medium=email&utm_term=0_bdde4cdc11-dca3188043-101570617

Langel, T. (2012, 09 15). Perf Feedback - What's slowing down Mobile Facebook. Retrieved from W3C:
http://lists.w3.org/Archives/Public/public-coremob/2012Sep/0021.html

McCarthy, M., & Trott, K. (2011, 07 29). Netflix Webkit-Based UI for TV Devices. Retrieved from Slideshare:
https://www.slideshare.net/mattmccarthy_nflx/netflix-webkitbased-ui-for-tv-devices-9168822

McGuire, S. (2016, 03 23). Performance without Compromise. Retrieved from Netflix Technology Blog:
https://medium.com/netflix-techblog/performance-without-compromise-40d6003c6037

Nel, J. (2013, 11 18). Building the New Netflix Experience for TV. Retrieved from Netflix Technology Blog:
https://medium.com/netflix-techblog/building-the-new-netflix-experience-for-tv-920d71d875de

Olanoff, D. (2012, 09 11). Mark Zuckerberg: Our Biggest Mistake Was Betting Too Much On HTML5. Retrieved from Techcrunch:
https://techcrunch.com/2012/09/11/mark-zuckerberg-our-biggest-mistake-with-mobile-was-betting-too-much-on-html5/

Penacchio, N. (2014). Next-gen appliance e Qt Quick in Electrolux. Retrieved from Youtube:
https://www.youtube.com/watch?v=bnRYKNPf2x0

qt.io. (2017). Built with Qt. Retrieved from qt.io: https://www1.qt.io/built-with-qt/

React. (2013). Retrieved from ReactJS: https://reactjs.org

S1nn. (2014, 05 06). Porsche 918 Spyder Infotainment System Is Based on HTML5 Technology. Retrieved from Pddnet:
https://www.pddnet.com/news/2014/06/porsche-918-spyder-infotainment-system-based-html5-technology

SoftAtHome. (2013). Orange Livebox Play. Retrieved from SoftAtHome:
https://www.softathome.com/pages/customer-success-stories

Stubert, B. (2016, 11 20). 30% Faster Startup Thanks to QtQuick Compiler. Retrieved from Embedded Use:
http://www.embeddeduse.com/2016/11/20/30-faster-startup-thanks-to-qtquick-compiler/

All views expressed in this white paper are the authors and do not necessarily
represent those of any other entities. Assumptions made in the analysis are
not reflective of the position of any other entity than the author(s).

